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How a two-phase Xe TPC 
is a perfect way to look for 

WIMPs

T. Shutt
Case Western Reserve University

1

1



LU

T. Shutt - NygrenFest, May 3, 2014

Dark Matter

• In the lab:
— 300 mproton / liter
— velocity ~ 10-3 c

• Elastic scattering on nuclei
— Coherent: rate ~ A2

• Rate < 1 /100kg/month
2

 Dark energy           ≈ 0.68
 Dark matter            ≈ 0.27
 Baryons              ≈ 0.05 
  (Stars+Planets                     ≈ 0.004)

 Neutrinos:               ≈ 0.001-0.015

 Total                1
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Search results for direct scattering
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All current limits

Today

LUX

XENON10 XENON100

• Single phase Xe - 1990 (Dama), then UKDM + Cline/ICARUS - > ZEPLIN I.
• ~1997: ZEPLIN two phase UK/UCLA via ICARUS
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With future projections

Today
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Jonathan Feng and Steve Ritz
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Dual phase Time Projection Chamber

• Liquid Xe - large 
signal, strong 
shielding of external 
backgrounds

• 3D event position

• Charge (S2) / light (S1) 
distinguishes electron 
recoil backgrounds

• Single electrons and 
photons

7DURA Meeting 3/5/2013

2-phase Xe: scintillation and ionization

Nuclear recoils produce much less
ionization per energy deposit.

ER: gammas

NR: neutrons

S1

S2

drift time

Liquid Xenon is homogeneous, is dense, has high A (131) scintillates 
brightly in the VUV range (178 nm), and is transparent at this wavelength.

S1 light is direct scintillation.  S2 light 
counts ionization electrons, is delayed.

 XENON100

7

LUX
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The LUX TPC

8DURA Meeting 3/5/2013

2-phase Xe: scintillation and ionization

Nuclear recoils produce much less
ionization per energy deposit.

ER: gammas

NR: neutrons

S1

S2

drift time

Liquid Xenon is homogeneous, is dense, has high A (131) scintillates 
brightly in the VUV range (178 nm), and is transparent at this wavelength.

S1 light is direct scintillation.  S2 light 
counts ionization electrons, is delayed.

 XENON100

7

LUX

 300 kg active Xe
122 2” Ø PMTs
Teflon walls
Low background Titanium cryostat
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April
2011

2013

2009

LUX @ SURF 
in the 

Homestake 
Mine

Davis Cavern 1964
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LUX collaboration
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Brown
Case
Edinburgh
Imperial College
Maryland
LLNL
LIP-Coimbra
Rochester
South Dakota

SD School of Mines
SDSTA
Texas A&M
UC Berkeley/LBNL
UC Davis
UC Santa Barbara
University College of 
London
Yale

17 Institutions
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Sturgis
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A “typical” event

Requirements for WIMP search candidate events
• S2 trigger (at least 2 trigger ch. ≥ 8 phe within 2 μs)
• 2 phe (2-fold coincidence) ≤ S1 ≤ 30 phe
• 200 phe (8 e-) ≤ S2 ≤ 3300 phe
• total area of other pulses in the event < 100 phe
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Background and Signal
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Nuclear recoils: signal

Electron recoils: background
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WIMP search data set
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160 events

118 fiducial volume: r < 18 cm, 7 < z < 47 cm

data for non-blind analysis, April 21 - August 8, 2013
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LUX spin-independent results
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Shielding Gamma Rays
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Water

Liquid Xenon

Water, 2.6 MeV gammas

1 m water shielding
Liquid Xe, 2.6 MeV gammas

 1 m liquid Xe
16
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Self-shielding in liquid xenon
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• MeV gammas and 
neutrons: λ ~10 cm

P (L) �=
L

�
e�

L
�

PMT

Single, low-energy 
Compton scatter

300 kg LUX

fiducial

7  Ton LZ

pp solar ν
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Charge and Light signals
• Rejection of background depends on separation and 

width of electron recoil and nuclear recoil “bands”

• Complicated physics at play

Electron 
recoils

Nuclear 
recoils
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Signal production in liquid Xe

e-
E ~ keV

Electron Recoils 
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Signal production in liquid Xe
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Anti-correlation data

Single and Dual Phase data

Li
gh

t 

Charge 

(“Doke” plot)

23



LU

T. Shutt - NygrenFest, May 3, 2014 24

Bands not explained by 
dE/dx alone
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Idea: shift in electron recoil band occurs 
when track lengths drop below initial 
electron diffusion scale
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recoil
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Figure 6.3: Example nuclear recoil tracks at 2, 5, 10, 20, 50, and 100 keVr, simulated using RIVAL.
Each blue dot is one xenon ion, and the red X marks the location of the initial recoil. All of these
tracks are much smaller than the box sizes found in Section 6.4.

We then take the initial condition

N0 =
Ni
∑

k=1

{

1
8a3 |x − xk|, |y − yk|, |z − zk| < a

0 otherwise
, (6.19)

where {xk, yk, zk} are the locations of the ions in the track as given by the recoil simulations. Note

that in the original Thomas-Imel condition a determines the total size of the track, but for us the

track geometry is given in the spatial distribution of ions and a is the smearing applied at each

ion. This construction is the simplest way to include the Monte Carlo tracks in the recombination
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Electron recoil band w
idth

Electron Recoils At 122 keV

(8891 total quanta)

Band width

Recombination fluctuations

Light collection statistics

Linear S2 fluctuations

Energy Dependence

Total

S1+S2
S1stat+inst  

S2inst+stat

electron recoils nuclear recoils

Note: small 
recombination 
fluctuations

Recombination 

This band width determines 
background discrimination
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Purification, Tritium
• Xe purity is challenging

• Heat exchange system for 
continuos processing.
— 2-day turnover: 250 W -> ~10 W

• Tritium injection:
— Needed to calibrate center

— Only instance of injection of long-
lived isotope into a low background 
experiment
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Kr
Xe

He

Krypton: kryptonite for Xe

charcoal
column

condenser

thermosyphon
dewar

thermosyphon lines (3)

sampling RGA

Xe recovery
pumps

feed & 
recovery
bottles

gas
control
panel

graduate student
Chang Lee

gas
panel

traps

28

Krypton-85:
- 10-y T1/2 beta decay
- can’t self-shield
- ~130 ppb in purchased Xe

- 20 ppt ~ 122 PMTs 
- noble gas: non-reactive

28
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Life at threshold
• WIMP energy ~ keV

— Light mass WIMPS -> 100 eV

• Every eighth photon, and every single electron 
generated in the TPC are measured

• Higher drift fields give better 
background rejection
— Higher electron emission from grids

• An “interesting” environment in 
which to find WIMPs

29

Typical Single-Electron Signal

• A typical liquid electron has between 20 and 50 phe that are distributed 
in 122 PMTs.

• It lasts more than 1 µs.
• The majority of the spikes that we observe are very similar and most of 
them are single phe.

3

Typical SE signal
All the PMTs

pulse area: 42 phe

Tuesday, April 8, 2014

A single electron

~1 µsec

29



LU

T. Shutt - NygrenFest, May 3, 2014

LZ: LUX + ZEPLIN

30

• 20-fold scale-up from LUX

• Gd-loaded scintillator + Xe 
“skin” outer detector
—Effective for neutrons and gammas

• ~6 ton fiducial in which 
dominant background is 
neutrinos
—Electron recoil channel: pp solar
—Nuclear recoil channel: coherent 

scatter of atmospheric neutrinos 3 

Section view through water 
tank and detector 
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Jonathan Feng and Steve Ritz
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Future directions
• LZ is not quite at neutrino limit

• Background rejection might or might not be sufficient to 
defeat pp solar neutrino background

• Get rid of PMT radioactivity
— Would enable simultaneous ßß-decay and DM search

• Please buy LED light bulbs
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